Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.390
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38571695

RESUMO

In rheumatoid arthritis, dysregulated cytokine signaling has been implicated as a primary factor in chronic inflammation. Many antirheumatic and biological therapies are used to suppress joint inflammation, but despite these advances, effectiveness is not universal, and delivery is often at high doses, which can predispose patients to significant off-target effects. During chronic inflammation, the inappropriate regulation of signaling factors by macrophages accelerates progression of disease by driving an imbalance of inflammatory cytokines, making macrophages an ideal cellular target. To develop a macrophage-based therapy to treat chronic inflammation, we engineered a novel induced pluripotent stem cell (iPSC)-derived macrophage capable of delivering soluble TNF receptor 1 (TNFR1), an anti-inflammatory biologic inhibitor of tumor necrosis factor alpha (TNF-α), in an auto-regulated manner in response to TNF-α. Murine iPSCs were differentiated into macrophages (iMACs) over a 17-day optimized protocol with continued successful differentiation confirmed at key timepoints. Varying inflammatory and immunomodulatory stimuli demonstrated traditional macrophage function and phenotypes. In response to TNF-α, therapeutic iMACs produced high levels of sTNFR1 in an autoregulated manner, which inhibited inflammatory signaling. This self-regulating iMAC system demonstrated the potential for macrophage-based drug delivery as a novel therapeutic approach for a variety of chronic inflammatory diseases.


Assuntos
Produtos Biológicos , Células-Tronco Pluripotentes Induzidas , Humanos , Camundongos , Animais , Fator de Necrose Tumoral alfa/farmacologia , Células-Tronco Pluripotentes Induzidas/patologia , Citocinas/farmacologia , Macrófagos , Inflamação/patologia , Anti-Inflamatórios/farmacologia , Produtos Biológicos/uso terapêutico
2.
Commun Biol ; 7(1): 413, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594382

RESUMO

Better understanding of the earliest molecular pathologies of all neurodegenerative diseases is expected to improve human therapeutics. We investigated the earliest molecular pathology of spinocerebellar ataxia type 1 (SCA1), a rare familial neurodegenerative disease that primarily induces death and dysfunction of cerebellum Purkinje cells. Extensive prior studies have identified involvement of transcription or RNA-splicing factors in the molecular pathology of SCA1. However, the regulatory network of SCA1 pathology, especially central regulators of the earliest developmental stages and inflammatory events, remains incompletely understood. Here, we elucidated the earliest developmental pathology of SCA1 using originally developed dynamic molecular network analyses of sequentially acquired RNA-seq data during differentiation of SCA1 patient-derived induced pluripotent stem cells (iPSCs) to Purkinje cells. Dynamic molecular network analysis implicated histone genes and cytokine-relevant immune response genes at the earliest stages of development, and revealed relevance of ISG15 to the following degradation and accumulation of mutant ataxin-1 in Purkinje cells of SCA1 model mice and human patients.


Assuntos
Células-Tronco Pluripotentes Induzidas , Ataxias Espinocerebelares , Camundongos , Humanos , Animais , Células de Purkinje/fisiologia , Células-Tronco Pluripotentes Induzidas/patologia , Camundongos Transgênicos , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia , Ubiquitinas , Citocinas
3.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474060

RESUMO

The pathophysiology of nonketotic hyperglycinemia (NKH), a rare neuro-metabolic disorder associated with severe brain malformations and life-threatening neurological manifestations, remains incompletely understood. Therefore, a valid human neural model is essential. We aimed to investigate the impact of GLDC gene variants, which cause NKH, on cellular fitness during the differentiation process of human induced pluripotent stem cells (iPSCs) into iPSC-derived astrocytes and to identify sustainable mechanisms capable of overcoming GLDC deficiency. We developed the GLDC27-FiPS4F-1 line and performed metabolomic, mRNA abundance, and protein analyses. This study showed that although GLDC27-FiPS4F-1 maintained the parental genetic profile, it underwent a metabolic switch to an altered serine-glycine-one-carbon metabolism with a coordinated cell growth and cell cycle proliferation response. We then differentiated the iPSCs into neural progenitor cells (NPCs) and astrocyte-lineage cells. Our analysis showed that GLDC-deficient NPCs had shifted towards a more heterogeneous astrocyte lineage with increased expression of the radial glial markers GFAP and GLAST and the neuronal markers MAP2 and NeuN. In addition, we detected changes in other genes related to serine and glycine metabolism and transport, all consistent with the need to maintain glycine at physiological levels. These findings improve our understanding of the pathology of nonketotic hyperglycinemia and offer new perspectives for therapeutic options.


Assuntos
Hiperglicinemia não Cetótica , Células-Tronco Pluripotentes Induzidas , Humanos , Hiperglicinemia não Cetótica/genética , Hiperglicinemia não Cetótica/patologia , Glicina Desidrogenase (Descarboxilante)/genética , Astrócitos/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Glicina , Serina
4.
Stem Cell Res ; 76: 103379, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458030

RESUMO

Leigh syndrome is a rare autosomal recessive disorder showcasing a diverse range of neurological symptoms. Classical Leigh syndrome is associated with mitochondrial complex I deficiency, primarily resulting from biallelic mutations in the NDUFAF5 gene, encoding the NADH:ubiquinone oxidoreductase complex assembly factor 5. Using the Sendai virus delivery system, we generated an induced pluripotent stem cell line from peripheral blood mononuclear cells of a 47-years-old female patient who carried a homozygous NDUFAF5 c.836 T > G (p.Met279Arg) mutation. This cellular model serves as a tool for investigating the underlying pathogenic mechanisms and for the development of potential treatments for Leigh syndrome.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Leigh , Doenças Mitocondriais , Humanos , Feminino , Pessoa de Meia-Idade , Doença de Leigh/genética , Mutação de Sentido Incorreto , Células-Tronco Pluripotentes Induzidas/patologia , Leucócitos Mononucleares/patologia , Doenças Mitocondriais/genética , Doenças Mitocondriais/patologia , Mutação , Metiltransferases/genética , Proteínas Mitocondriais/genética
5.
Front Biosci (Landmark Ed) ; 29(3): 114, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38538275

RESUMO

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disorder, characterized by progressive loss of both upper and lower motor neurons, resulting in clinical features such as muscle weakness, paralysis, and ultimately, respiratory failure. Nowadays, there is not effective treatment to reverse the progression of the disease, that leads to death within 3-5 years after the onset. Nevertheless, the induced pluripotent stem cells (iPS) technology could be the answer, providing disease modelling, drug testing, and cell-based therapies for this pathology. The aim of this work was to conduct a literature review of the past 5 years about the role of iPS in ALS, to better define the neurobiological mechanisms involved in the pathogenesis and the potential future therapies. The review also deals with advanced and currently available technologies used to reprogram cell lines and generate human motor neurons in vitro, which represent the source to study the pathological processes, the relationship between phenotype and genotype, the disease progression and the potential therapeutic targets of these group of disorders. Specific treatment options with stem cells involve Advance Gene Editing Technology, neuroprotective agents, and cells or exosomes transplantation, aimed to replace dead or damaged nerve cells. In summary, this review comprehensively addresses the role of human pluripotent stem cells (hPSCs) in motor neuron diseases (MND), with a focus on physiopathology, diagnostic and prognostic implications, specific and potential future treatment options. Understanding the biological mechanisms and practical implications of hPSCs in MND is crucial for advancing therapeutic strategies and improving outcomes for patients affected by these devastating diseases.


Assuntos
Esclerose Amiotrófica Lateral , Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Humanos , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/terapia , Esclerose Amiotrófica Lateral/metabolismo , Neurônios Motores/metabolismo , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia
6.
Eur J Med Res ; 29(1): 101, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321571

RESUMO

Iron metabolism disorders are implicated in the pathogenesis of Alzheimer's disease (AD). It was previously reported that transferrin receptor (TFR1) expression was upregulated in AD mouse model. However, the precise biological functions of TFR1 in AD progression remains unclear. Herein, we observed a gradual increase in TFR1 protein expression during the differentiation of AD patient-derived induced pluripotent stem cells (AD-iPS). TFR1 knockdown inhibited the protein expression of ferritin and ferritin heavy chain 1 (FTH1), enhanced the expression of ferroportin 1 (FPN1), and decreased intracellular levels of total iron, labile iron, and reactive oxygen species (ROS). Moreover, TFR1 knockdown improved mitochondrial membrane potential (MMP), increased adenosine triphosphate (ATP) content, downregulated mitochondrial fission proteins, and upregulated mitochondrial fusion proteins. TFR1 knockdown alleviated iron overload and mitochondrial dysfunction in neural cells differentiated from AD-iPS, while TFR1 overexpression showed the opposite results. Additionally, TFR1interacted with glycogen synthase kinase 3 beta (GSK3B) and promoted GSK3B expression. GSK3B overexpression reversed the inhibitory effects of TFR1 knockdown on iron overload and mitochondrial dysfunction in AD-iPS differentiated neural cells. In conclusion, TFR1 knockdown alleviated iron overload and mitochondrial dysfunction in neural cells differentiated from AD-iPS by promoting GSK3B expression. Our findings provide a potential therapeutic target for the treatment of AD.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Sobrecarga de Ferro , Doenças Mitocondriais , Humanos , Camundongos , Animais , Doença de Alzheimer/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Ferro/metabolismo , Receptores da Transferrina/metabolismo , Sobrecarga de Ferro/metabolismo
7.
Stem Cell Reports ; 19(3): 383-398, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38366597

RESUMO

The transplantation of neural stem/progenitor cells (NS/PCs) derived from human induced pluripotent stem cells (hiPSCs) has shown promise in spinal cord injury (SCI) model animals. Establishing a functional synaptic connection between the transplanted and host neurons is crucial for motor function recovery. To boost therapeutic outcomes, we developed an ex vivo gene therapy aimed at promoting synapse formation by expressing the synthetic excitatory synapse organizer CPTX in hiPSC-NS/PCs. Using an immunocompromised transgenic rat model of SCI, we evaluated the effects of transplanting CPTX-expressing hiPSC-NS/PCs using histological and functional analyses. Our findings revealed a significant increase in excitatory synapse formation at the transplantation site. Retrograde monosynaptic tracing indicated extensive integration of transplanted neurons into the surrounding neuronal tracts facilitated by CPTX. Consequently, locomotion and spinal cord conduction significantly improved. Thus, ex vivo gene therapy targeting synapse formation holds promise for future clinical applications and offers potential benefits to individuals with SCI.


Assuntos
Células-Tronco Pluripotentes Induzidas , Traumatismos da Medula Espinal , Humanos , Ratos , Animais , Células-Tronco Pluripotentes Induzidas/patologia , Diferenciação Celular/genética , Transplante de Células-Tronco , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/patologia , Medula Espinal , Terapia Genética , Recuperação de Função Fisiológica/fisiologia
8.
Dis Model Mech ; 17(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38353122

RESUMO

Nervous system tumors, particularly brain tumors, represent the most common tumors in children and one of the most lethal tumors in adults. Despite decades of research, there are few effective therapies for these cancers. Although human nervous system tumor cells and genetically engineered mouse models have served as excellent platforms for drug discovery and preclinical testing, they have limitations with respect to accurately recapitulating important aspects of the pathobiology of spontaneously arising human tumors. For this reason, attention has turned to the deployment of human stem cell engineering involving human embryonic or induced pluripotent stem cells, in which genetic alterations associated with nervous system cancers can be introduced. These stem cells can be used to create self-assembling three-dimensional cerebral organoids that preserve key features of the developing human brain. Moreover, stem cell-engineered lines are amenable to xenotransplantation into mice as a platform to investigate the tumor cell of origin, discover cancer evolutionary trajectories and identify therapeutic vulnerabilities. In this article, we review the current state of human stem cell models of nervous system tumors, discuss their advantages and disadvantages, and provide consensus recommendations for future research.


Assuntos
Neoplasias Encefálicas , Células-Tronco Pluripotentes Induzidas , Criança , Humanos , Animais , Camundongos , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/patologia , Neoplasias Encefálicas/patologia , Encéfalo/patologia , Mutação
9.
Biochem Soc Trans ; 52(1): 163-176, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38288874

RESUMO

The investigation of neurodegenerative diseases advanced significantly with the advent of cell-reprogramming technology, leading to the creation of new models of human illness. These models, derived from induced pluripotent stem cells (iPSCs), facilitate the study of sporadic as well as hereditary diseases and provide a comprehensive understanding of the molecular mechanisms involved with neurodegeneration. Through proteomics, a quantitative tool capable of identifying thousands of proteins from small sample volumes, researchers have attempted to identify disease mechanisms by detecting differentially expressed proteins and proteoforms in disease models, biofluids, and postmortem brain tissue. The integration of these two technologies allows for the identification of novel pathological targets within the realm of neurodegenerative diseases. Here, we highlight studies from the past 5 years on the contributions of iPSCs within neuroproteomic investigations, which uncover the molecular mechanisms behind these illnesses.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doenças Neurodegenerativas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Reprogramação Celular , Doenças Neurodegenerativas/metabolismo
10.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(1): 38-41, 2024 Jan 10.
Artigo em Chinês | MEDLINE | ID: mdl-38171557

RESUMO

OBJECTIVE: To obtain skin-derived induced pluripotent stem cells (iPSCs) from an Osteogenesis imperfecta (OI) patient carrying WNT1c.677C>T mutation in order to provide a new cell model for investigating the underlying molecular mechanism and stem cell therapy for OI. METHODS: The pathogenic variant of the patient was identified by Sanger sequencing. With informed consent from the patient, skin tissue was biopsied, and primary skin fibroblasts were cultured. Skin fibroblasts were induced into iPSCs using Sendai virus-mediated non-genomic integration reprogramming method. The iPSC cell lines were characterized for pluripotency, differentiation capacity, and karyotyping assay. RESULTS: The patient was found to carry homozygous missense c.677C>T (p.Ser226Leu) mutation of the WNT1 gene. The established iPSC lines possessed self-renewal and capacity for in vitro differentiation. It also has a diploid karyotype (46,XX). CONCLUSION: A patient-specific WNT1 gene mutation (WNT1c.677C>T) iPSC line was established, which can provide a cell model for the study of OI caused by the mutation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Osteogênese Imperfeita , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Osteogênese Imperfeita/genética , Mutação , Diferenciação Celular/genética , Linhagem Celular
11.
Free Radic Biol Med ; 213: 164-173, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38246514

RESUMO

Peripheral autonomic nervous system (P-ANS) dysfunction is a critical non-motor phenotype of Parkinson's disease (PD). The majority of PD cases are sporadic and lack identified PD-associated genes involved. Epidemiological and animal model studies suggest an association with pesticides and other environmental toxins. However, the cellular mechanisms underlying toxin induced P-ANS dysfunctions remain unclear. Here, we mapped the global transcriptome changes in human induced pluripotent stem cell (iPSC) derived P-ANS sympathetic neurons during inhibition of the mitochondrial respiratory chain by the PD-related pesticide, rotenone. We revealed distinct transcriptome profiles between acute and chronic exposure to rotenone. In the acute stage, there was a down regulation of specific cation channel genes, known to mediate electrophysiological activity, while in the chronic stage, the human P-ANS neurons exhibited dysregulation of anti-apoptotic and Golgi apparatus-related pathways. Moreover, we identified the sodium voltage-gated channel subunit SCN3A/Nav1.3 as a potential biomarker in human P-ANS neurons associated with PD. Our analysis of the rotenone-altered coding and non-coding transcriptome of human P-ANS neurons may thus provide insight into the pathological signaling events in the sympathetic neurons during PD progression.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Parkinson , Animais , Humanos , Doença de Parkinson/metabolismo , Rotenona/toxicidade , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Neurônios/metabolismo , Fenótipo
12.
Dokl Biol Sci ; 515(1): 15-19, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38190040

RESUMO

A new in vitro model of Huntington's disease (HD) was developed via a direct reprogramming of dermal fibroblasts from HD patients into striatal neurons. A reprogramming into induced pluripotent stem (iPS) cells is obviated in the case of direct reprogramming, which thus yields neurons that preserve the epigenetic information inherent in cells of a particular donor and, consequently, the age-associated disease phenotype. A main histopathological feature of HD was reproduced in the new model; i.e., aggregates of mutant huntingtin accumulated in striatal neurons derived from a patient's fibroblasts. Experiments with cultured neurons obtained via direct reprogramming make it possible to individually assess the progression of neuropathology and to implement a personalized approach to choosing the treatment strategy and drugs for therapy. The in vitro model of HD can be used in preclinical drug studies.


Assuntos
Doença de Huntington , Células-Tronco Pluripotentes Induzidas , Humanos , Animais , Doença de Huntington/genética , Doença de Huntington/patologia , Neurônios , Corpo Estriado/patologia , Fibroblastos , Células-Tronco Pluripotentes Induzidas/patologia , Modelos Animais de Doenças
13.
Cell Rep ; 42(12): 113431, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38039961

RESUMO

In autosomal dominant polycystic kidney disease (ADPKD), renal cyst lesions predominantly arise from collecting ducts (CDs). However, relevant CD cyst models using human cells are lacking. Although previous reports have generated in vitro renal tubule cyst models from human induced pluripotent stem cells (hiPSCs), therapeutic drug candidates for ADPKD have not been identified. Here, by establishing expansion cultures of hiPSC-derived ureteric bud tip cells, an embryonic precursor that gives rise to CDs, we succeed in advancing the developmental stage of CD organoids and show that all CD organoids derived from PKD1-/- hiPSCs spontaneously develop multiple cysts, clarifying the initiation mechanisms of cystogenesis. Moreover, we identify retinoic acid receptor (RAR) agonists as candidate drugs that suppress in vitro cystogenesis and confirm the therapeutic effects on an ADPKD mouse model in vivo. Therefore, our in vitro CD cyst model contributes to understanding disease mechanisms and drug discovery for ADPKD.


Assuntos
Cistos , Células-Tronco Pluripotentes Induzidas , Neoplasias Renais , Rim Policístico Autossômico Dominante , Camundongos , Animais , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Rim/patologia , Neoplasias Renais/patologia , Organoides/patologia , Cistos/patologia , Canais de Cátion TRPP
14.
Cell Rep Med ; 4(12): 101327, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38091985

RESUMO

Functionally rejuvenated human papilloma virus-specific cytotoxic T lymphocytes (HPV-rejTs) generated from induced pluripotent stem cells robustly suppress cervical cancer. However, autologous rejT generation is time consuming, leading to difficulty in treating patients with advanced cancer. Although use of allogeneic HPV-rejTs can obviate this, the major obstacle is rejection by the patient immune system. To overcome this, we develop HLA-A24&-E dual integrated HPV-rejTs after erasing HLA class I antigens. These rejTs effectively suppress recipient immune rejection while maintaining more robust cytotoxicity than original cytotoxic T lymphocytes. Single-cell RNA sequencing performed to gain deeper insights reveal that HPV-rejTs are highly enriched with tissue resident memory T cells, which enhance cytotoxicity against cervical cancer through TGFßR signaling, with increased CD103 expression. Genes associated with the immunological synapse also are upregulated, suggesting that these features promote stronger activation of T cell receptor (TCR) and increased TCR-mediated target cell death. We believe that our work will contribute to feasible "off-the-shelf" T cell therapy with robust anti-cervical cancer effects.


Assuntos
Células-Tronco Pluripotentes Induzidas , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/terapia , Células-Tronco Pluripotentes Induzidas/patologia , Células T de Memória , Receptores de Antígenos de Linfócitos T/genética
15.
J Transl Med ; 21(1): 910, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38098048

RESUMO

BACKGROUND: Retinal degeneration (RD) is a group of disorders on irreversible vision loss. Multiple types of stem cells were used in clinical trials for RD treatment. However, it remains unknown what kinds of stem cells are most effective for the treatment. Therefore, we investigated the subretinal transplantation of several types of stem cells, human adipose-derived stem cells (hADSCs), amniotic fluid stem cells (hAFSCs), bone marrow stem cells (hBMSCs), dental pulp stem cells (hDPSCs), induced pluripotent stem cell (hiPSC), and hiPSC-derived retinal pigment epithelium (RPE) cells for protection effects, paracrine effects and treatment efficiency in an RD disease model rats. METHODS: The generation and characterization of these stem cells and hiPSC-derived RPE cells were performed before transplantation. The stem cells or hiPSC-derived RPE cell suspension labelled with CellTracker Green to detect transplanted cells were delivered into the subretinal space of 3-week-old RCS rats. The control group received subretinal PBS injection or non-injection. A series of detections including fundus photography, optomotor response (OMR) evaluations, light-dark box testing, electroretinography (ERG), and hematoxylin and eosin (HE) staining of retinal sections were conducted after subretinal injection of the cells. RESULTS: Each stem cell, hiPSC-derived RPE cell or PBS (blank experiment) was successfully transplanted into at least six RCS rats subretinally. Compared with the control rats, RCS rats subjected to subretinal transplantation of any stem cells except hiPSCs showed higher ERG waves (p < 0.05) and quantitative OMR (qOMR) index values (hADSCs: 1.166, hAFSCs: 1.249, hBMSCs: 1.098, hDPSCs: 1.238, hiPSCs: 1.208, hiPSC-RPE cells: 1.294, non-injection: 1.03, PBS: 1.06), which indicated better visual function, at 4 weeks post-injection. However, only rats that received hiPSC-derived RPE cells maintained their visual function at 8 weeks post-injection (p < 0.05). The outer nuclear layer thickness observed in histological sections after HE staining showed the same pattern as the ERG and qOMR results. CONCLUSIONS: Compared to hiPSC-derived RPE cells, adult and fetal stem cells yielded improvements in visual function for up to 4 weeks post-injection; this outcome was mainly based on the paracrine effects of several types of growth factors secreted by the stem cells. Patients with RD will benefit from the stem cell therapy.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Mesenquimais , Degeneração Retiniana , Adulto , Humanos , Ratos , Animais , Degeneração Retiniana/terapia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Retina/patologia , Eletrorretinografia , Células-Tronco Mesenquimais/metabolismo , Epitélio Pigmentado da Retina/patologia
16.
Nat Commun ; 14(1): 8043, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114482

RESUMO

The complex neuromuscular network that controls body movements is the target of severe diseases that result in paralysis and death. Here, we report the development of a robust and efficient self-organizing neuromuscular junction (soNMJ) model from human pluripotent stem cells that can be maintained long-term in simple adherent conditions. The timely application of specific patterning signals instructs the simultaneous development and differentiation of position-specific brachial spinal neurons, skeletal muscles, and terminal Schwann cells. High-content imaging reveals self-organized bundles of aligned muscle fibers surrounded by innervating motor neurons that form functional neuromuscular junctions. Optogenetic activation and pharmacological interventions show that the spinal neurons actively instruct the synchronous skeletal muscle contraction. The generation of a soNMJ model from spinal muscular atrophy patient-specific iPSCs reveals that the number of NMJs and muscle contraction is severely affected, resembling the patient's pathology. In the future, the soNMJ model could be used for high-throughput studies in disease modeling and drug development. Thus, this model will allow us to address unmet needs in the neuromuscular disease field.


Assuntos
Células-Tronco Pluripotentes Induzidas , Atrofia Muscular Espinal , Humanos , Junção Neuromuscular/patologia , Neurônios Motores/fisiologia , Fibras Musculares Esqueléticas/patologia , Atrofia Muscular Espinal/patologia , Músculo Esquelético/patologia , Células-Tronco Pluripotentes Induzidas/patologia
17.
Stem Cell Res Ther ; 14(1): 378, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38124191

RESUMO

BACKGROUND: There are currently no effective clinical therapies to ameliorate the loss of function that occurs after spinal cord injury. Electrical stimulation of the rat spinal cord through the rat tail has previously been described by our laboratory. We propose combinatorial treatment with human induced pluripotent stem cell-derived spinal neural progenitor cells (sNPCs) along with tail nerve electrical stimulation (TANES). The purpose of this study was to examine the influence of TANES on the differentiation of sNPCs with the hypothesis that the addition of TANES would affect incorporation of sNPCs into the injured spinal cord, which is our ultimate goal. METHODS: Chronically injured athymic nude rats were allocated to one of three treatment groups: injury only, sNPC only, or sNPC + TANES. Rats were sacrificed at 16 weeks post-transplantation, and tissue was processed and analyzed utilizing standard histological and tissue clearing techniques. Functional testing was performed. All quantitative data were presented as mean ± standard error of the mean. Statistics were conducted using GraphPad Prism. RESULTS: We found that sNPCs were multi-potent and retained the ability to differentiate into mainly neurons or oligodendrocytes after this transplantation paradigm. The addition of TANES resulted in more transplanted cells differentiating into oligodendrocytes compared with no TANES treatment, and more myelin was found. TANES not only promoted significantly higher numbers of sNPCs migrating away from the site of injection but also influenced long-distance axonal/dendritic projections especially in the rostral direction. Further, we observed localization of synaptophysin on SC121-positive cells, suggesting integration with host or surrounding neurons, and this finding was enhanced when TANES was applied. Also, rats that were transplanted with sNPCs in combination with TANES resulted in an increase in serotonergic fibers in the lumbar region. This suggests that TANES contributes to integration of sNPCs, as well as activity-dependent oligodendrocyte and myelin remodeling of the chronically injured spinal cord. CONCLUSIONS: Together, the data suggest that the added electrical stimulation promoted cellular integration and influenced the fate of human induced pluripotent stem cell-derived sNPCs transplanted into the injured spinal cord.


Assuntos
Células-Tronco Pluripotentes Induzidas , Traumatismos da Medula Espinal , Humanos , Ratos , Animais , Células-Tronco Pluripotentes Induzidas/patologia , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/patologia , Medula Espinal/patologia , Neurônios , Diferenciação Celular/fisiologia , Transplante de Células-Tronco/métodos , Estimulação Elétrica , Recuperação de Função Fisiológica
18.
Stem Cell Res ; 73: 103257, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38000347

RESUMO

Curative bone marrow transplantation (BMT) therapies for sickle cell disease (SCD) can cause infertility. The Fertility Preservation Program (FPP) in Pittsburgh cryopreserves testicular tissues for SCD patients prior to BMT in anticipation that those tissues can be thawed in the future and matured to produce sperm. Here, we generated and validated two isogenic patient-derived induced pluripotent stem cell (iPSC) lines from testicular biopsy fibroblasts of a 12-year-old SCD patient.


Assuntos
Anemia Falciforme , Células-Tronco Pluripotentes Induzidas , Humanos , Masculino , Criança , Células-Tronco Pluripotentes Induzidas/patologia , Sêmen , Transplante de Medula Óssea , Anemia Falciforme/patologia , Fibroblastos/patologia
19.
Cells ; 12(22)2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37998352

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) hold promise for cell-based therapy, yet the sourcing, quality, and invasive methods of MSCs impede their mass production and quality control. Induced pluripotent stem cell (iPSC)-derived MSCs (iMSCs) can be infinitely expanded, providing advantages over conventional MSCs in terms of meeting unmet clinical demands. METHODS: The potential of MSC therapy for Leber's hereditary optic neuropathy (LHON) remains uncertain. In this study, we used HLA-homozygous induced pluripotent stem cells to generate iMSCs using a defined protocol, and we examined their therapeutic potential in rotenone-induced LHON-like models in vitro and in vivo. RESULTS: The iMSCs did not cause any tumorigenic incidence or inflammation-related lesions after intravitreal transplantation, and they remained viable for at least nine days in the mouse recipient's eyes. In addition, iMSCs exhibited significant efficacy in safeguarding retinal ganglion cells (RGCs) from rotenone-induced cytotoxicity in vitro, and they ameliorated CGL+IPL layer thinning and RGC loss in vivo. Optical coherence tomography (OCT) and an electroretinogram demonstrated that iMSCs not only prevented RGC loss and impairments to the retinal architecture, but they also improved retinal electrophysiology performance. CONCLUSION: The generation of iMSCs via the HLA homozygosity of iPSCs offers a compelling avenue for overcoming the current limitations of MSC-based therapies. The results underscore the potential of iMSCs when addressing retinal disorders, and they highlight their clinical significance, offering renewed hope for individuals affected by LHON and other inherited retinal conditions.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Mesenquimais , Atrofia Óptica Hereditária de Leber , Camundongos , Animais , Atrofia Óptica Hereditária de Leber/induzido quimicamente , Atrofia Óptica Hereditária de Leber/terapia , Atrofia Óptica Hereditária de Leber/patologia , Rotenona/toxicidade , Células-Tronco Pluripotentes Induzidas/patologia , Células Ganglionares da Retina/patologia , Células-Tronco Mesenquimais/patologia
20.
Stem Cell Res Ther ; 14(1): 340, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012786

RESUMO

Inherited retinal diseases (IRDs) can induce severe sight-threatening retinal degeneration and impose a considerable economic burden on patients and society, making efforts to cure blindness imperative. Transgenic animals mimicking human genetic diseases have long been used as a primary research tool to decipher the underlying pathogenesis, but there are still some obvious limitations. As an alternative strategy, patient-derived induced pluripotent stem cells (iPSCs), particularly three-dimensional (3D) organoid technology, are considered a promising platform for modeling different forms of IRDs, including retinitis pigmentosa, Leber congenital amaurosis, X-linked recessive retinoschisis, Batten disease, achromatopsia, and best vitelliform macular dystrophy. Here, this paper focuses on the status of patient-derived iPSCs and organoids in IRDs in recent years concerning disease modeling and therapeutic exploration, along with potential challenges for translating laboratory research to clinical application. Finally, the importance of human iPSCs and organoids in combination with emerging technologies such as multi-omics integration analysis, 3D bioprinting, or microfluidic chip platform are highlighted. Patient-derived retinal organoids may be a preferred choice for more accurately uncovering the mechanisms of human retinal diseases and will contribute to clinical practice.


Assuntos
Células-Tronco Pluripotentes Induzidas , Degeneração Retiniana , Retinite Pigmentosa , Animais , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Retina/patologia , Degeneração Retiniana/patologia , Retinite Pigmentosa/genética , Retinite Pigmentosa/terapia , Retinite Pigmentosa/patologia , Organoides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...